Crankshaft ## Data Crankshaft | standard dimension
and repair stages | bearing
journal dia. | journal at fitted bearing | dia. | pins | | |---|-------------------------------------|-----------------------------|------------------------------|--|--| | Standard dimension | 63.96
63.95 | 27.00
27.02 | 51.96
51.95 | 50.00
50.12 | | | 1st repair stage | 63.71
63.70 | | 51.71
51.70 | | | | 2nd repair stage | 63.46
63.45 | up to 27 50 | 51.46
51.45 | up to 50.30 | | | 3rd repair stage | 63.21
63.20 | up to 27.50 | 51.21
51.20 | ир to 30.30 | | | 4th repair stage | 62.96
62.95 | | 50.96
50.95 | | | | Permissible radial runou | | 0.0025 | | | | | Permissible deviation of to reference axis of crain | 0.01 | | | | | | Permissible radial runou | 0.02 | | | | | | Permissible axial runou | | 0.012 | | | | | Permissible radial runou
journals ³) | ut of crankshaft | - | journal II, IV | 0.07 | | | | journal III from cylindrical shape | 0.10 | | | | | Permissible deviation of | f front crankshaft journa | al ²) - | radial runout ³) | 0.03 | | | Permissible deviation of | f running surfaces of thru | axial runout ³) | 0.02 | | | | Fillets on crankshaft jou | 2.5-3 | | | | | | Crankshaft journal dia. | 31.984-32.000 | | | | | | Running surface dia. for | 99.928
99.874 | | | | | | | | | | | | | Scleroscope hardness of crankshaft journals | | | value when new | 71-81 | | | Scleroscope hardness of
and crankpins | Cialikshart journals | - | | ************************************** | | Width of Crankpin Width of The limit value should be available at least at 2/3 of journal and crankpin circumference. When measuring in installed condition, eliminate radial bearing play by pushing against crankshaft journal. With crankshaft resting on outer crankshaft bearing journal I and V and at one full turn. The differenciating characteristics of crankshafts of engines 116 and 117 are shown on drawing and in table. Starting with installation of transmission 722.3 (W 4 A 040) into model 107.026 the crankshaft of engine 117.960 is standardized with that of engine 117.961. # Crankshafts engines 116 and 117 | Engine | A
(stroke) | С | E | G | J | К | Part no. of crankshaft | Interchange-
able with | |---------------------------------------|------------------|----|----------------------|----|--------------|------|------------------------------|---------------------------| | 116.960/961 | 35,9
(71,8) | 13 | 13 ¹) | 19 | with-
out | 52 | 116 031 16 01 | | | 116.960
116.961
116.962/963 | 39,45
(78,9) | | | | | 48 | 116 031 22 01 | | | 116.98
1st version | 32,9 | 21 | | | with | - 52 | 116 031 14 01 | 116 031 20 01 | | 116.98
2nd version | (65,8) | | 132) | 26 | | | 116 031 20 10 | 116 031 14 01 | | 117.960
1st version ³) | 42,5 (85) | 13 | | | with-
out | | 117 031 12 01 ³) | | | 117.960
2nd version
117.961 | | | 13 ¹) | 19 | | | 117 031 14 01 | | | 117.962
117.963 | | | | | | 48 | 117 031 21 01 | | | 117.98
1st version | | 21 | 13 ²) 26 | 26 | with | 52 | 117 031 10 01 | 117 031 18 01 | | 117.98
2nd version | | 13 | | | | | 117 031 18 01 | 117 031 10 01 | ¹⁾ Throughbore. 2) Blind hole bore. 3) In the event of repairs, the shorter crankshaft 117 031 14 01 can be installed instead of crankshaft 117 031 13 01, together with a length compensating washer, part no. 116 032 03 76, (10.5 mm thick) and the longer (29 mm, up to now 23 mm) necked-down screws, part no. 116 032 04 71. 000 589 20 21 00 ## Note Following repairs, no balancing of crankshaft is required. When checking and reconditioning crankshaft, proceed in sequence of diagram below. Group number for crankpin dia. (standard dimension) 1 = 51.945—51.954 mm or 47.945—47.954 mm 2 = 51.995—51.965 mm or 47.955—47.965 mm The number punched in at bottom applies to 1st crankpin. ### Diagram V = scrap. ^{*} Refer to section "Explanations concerning diagram". ### **Explanations concerning diagram** #### Crack test Clean crankshaft. Journals should be free of oil and grease. Magnetize crankshaft and apply fluorescent powder (fluxing). A color penetration test (immersion in bath or using spray can) can also be applied. Aids: Paint or UV-oil, cleaning agent, developer ### Hardness test Check hardness with Scleroscope. The minimum hardness should prevail at 2/3 of journal circumference. ## Hardening Journals without hardened fillets can be inductionhardened or flame-hardened. Journals with hardened fillets (arrow) should be induction-hardened on principle. If this is not possible, scrap crankshaft. When hardening journals without hardened fillets, the distance A between runout of hardened surface and fillet (4-5 mm) must be maintained. ## Checking the hardening For perfect hardening, check adjustment of hardening equipment by metallographic grinding. Pertinent tests can be made on scrapped crankshafts. Check hardening by etching the journal surface with a 2% alcoholic nitric acid (HNO₃) solution. No dark spots should show up at surface of journal. Non-hardened fillets will become dark. The hardened fillets, on the other hand, should be as bright as the journal surface. For comparison, we recommend an etching test on a metallographically inspected journal. Then, carefully wash off nitric acid by means of alcohol. ### **Corrosion protection** Coat crankshafts which are not immediately installed again with engine initial operation oil (SAE 30).